3.373 \(\int \frac{x}{1+3 x^4+x^8} \, dx\)

Optimal. Leaf size=75 \[ \frac{1}{2} \sqrt{\frac{1}{10} \left (3+\sqrt{5}\right )} \tan ^{-1}\left (\sqrt{\frac{1}{2} \left (3+\sqrt{5}\right )} x^2\right )-\frac{\tan ^{-1}\left (\sqrt{\frac{2}{3+\sqrt{5}}} x^2\right )}{\sqrt{10 \left (3+\sqrt{5}\right )}} \]

[Out]

-(ArcTan[Sqrt[2/(3 + Sqrt[5])]*x^2]/Sqrt[10*(3 + Sqrt[5])]) + (Sqrt[(3 + Sqrt[5])/10]*ArcTan[Sqrt[(3 + Sqrt[5]
)/2]*x^2])/2

________________________________________________________________________________________

Rubi [A]  time = 0.058168, antiderivative size = 75, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 3, integrand size = 14, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.214, Rules used = {1359, 1093, 203} \[ \frac{1}{2} \sqrt{\frac{1}{10} \left (3+\sqrt{5}\right )} \tan ^{-1}\left (\sqrt{\frac{1}{2} \left (3+\sqrt{5}\right )} x^2\right )-\frac{\tan ^{-1}\left (\sqrt{\frac{2}{3+\sqrt{5}}} x^2\right )}{\sqrt{10 \left (3+\sqrt{5}\right )}} \]

Antiderivative was successfully verified.

[In]

Int[x/(1 + 3*x^4 + x^8),x]

[Out]

-(ArcTan[Sqrt[2/(3 + Sqrt[5])]*x^2]/Sqrt[10*(3 + Sqrt[5])]) + (Sqrt[(3 + Sqrt[5])/10]*ArcTan[Sqrt[(3 + Sqrt[5]
)/2]*x^2])/2

Rule 1359

Int[(x_)^(m_.)*((a_) + (c_.)*(x_)^(n2_.) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = GCD[m + 1, n]}, Dist[
1/k, Subst[Int[x^((m + 1)/k - 1)*(a + b*x^(n/k) + c*x^((2*n)/k))^p, x], x, x^k], x] /; k != 1] /; FreeQ[{a, b,
 c, p}, x] && EqQ[n2, 2*n] && NeQ[b^2 - 4*a*c, 0] && IGtQ[n, 0] && IntegerQ[m]

Rule 1093

Int[((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(-1), x_Symbol] :> With[{q = Rt[b^2 - 4*a*c, 2]}, Dist[c/q, Int[1/(b/
2 - q/2 + c*x^2), x], x] - Dist[c/q, Int[1/(b/2 + q/2 + c*x^2), x], x]] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*
a*c, 0] && PosQ[b^2 - 4*a*c]

Rule 203

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTan[(Rt[b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{x}{1+3 x^4+x^8} \, dx &=\frac{1}{2} \operatorname{Subst}\left (\int \frac{1}{1+3 x^2+x^4} \, dx,x,x^2\right )\\ &=\frac{\operatorname{Subst}\left (\int \frac{1}{\frac{3}{2}-\frac{\sqrt{5}}{2}+x^2} \, dx,x,x^2\right )}{2 \sqrt{5}}-\frac{\operatorname{Subst}\left (\int \frac{1}{\frac{3}{2}+\frac{\sqrt{5}}{2}+x^2} \, dx,x,x^2\right )}{2 \sqrt{5}}\\ &=-\frac{\tan ^{-1}\left (\sqrt{\frac{2}{3+\sqrt{5}}} x^2\right )}{\sqrt{10 \left (3+\sqrt{5}\right )}}+\frac{1}{2} \sqrt{\frac{1}{10} \left (3+\sqrt{5}\right )} \tan ^{-1}\left (\sqrt{\frac{1}{2} \left (3+\sqrt{5}\right )} x^2\right )\\ \end{align*}

Mathematica [A]  time = 0.0383284, size = 74, normalized size = 0.99 \[ \frac{\tan ^{-1}\left (\sqrt{\frac{2}{3-\sqrt{5}}} x^2\right )}{\sqrt{10 \left (3-\sqrt{5}\right )}}-\frac{\tan ^{-1}\left (\sqrt{\frac{2}{3+\sqrt{5}}} x^2\right )}{\sqrt{10 \left (3+\sqrt{5}\right )}} \]

Antiderivative was successfully verified.

[In]

Integrate[x/(1 + 3*x^4 + x^8),x]

[Out]

ArcTan[Sqrt[2/(3 - Sqrt[5])]*x^2]/Sqrt[10*(3 - Sqrt[5])] - ArcTan[Sqrt[2/(3 + Sqrt[5])]*x^2]/Sqrt[10*(3 + Sqrt
[5])]

________________________________________________________________________________________

Maple [A]  time = 0.014, size = 60, normalized size = 0.8 \begin{align*}{\frac{2\,\sqrt{5}}{-10+10\,\sqrt{5}}\arctan \left ( 4\,{\frac{{x}^{2}}{-2+2\,\sqrt{5}}} \right ) }-{\frac{2\,\sqrt{5}}{10+10\,\sqrt{5}}\arctan \left ( 4\,{\frac{{x}^{2}}{2+2\,\sqrt{5}}} \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x/(x^8+3*x^4+1),x)

[Out]

2/5*5^(1/2)/(-2+2*5^(1/2))*arctan(4*x^2/(-2+2*5^(1/2)))-2/5*5^(1/2)/(2+2*5^(1/2))*arctan(4*x^2/(2+2*5^(1/2)))

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{x}{x^{8} + 3 \, x^{4} + 1}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x/(x^8+3*x^4+1),x, algorithm="maxima")

[Out]

integrate(x/(x^8 + 3*x^4 + 1), x)

________________________________________________________________________________________

Fricas [B]  time = 1.54003, size = 417, normalized size = 5.56 \begin{align*} \frac{1}{10} \, \sqrt{10} \sqrt{-\sqrt{5} + 3} \arctan \left (-\frac{1}{10} \, \sqrt{10} \sqrt{5} x^{2} \sqrt{-\sqrt{5} + 3} + \frac{1}{20} \, \sqrt{10} \sqrt{5} \sqrt{2} \sqrt{2 \, x^{4} + \sqrt{5} + 3} \sqrt{-\sqrt{5} + 3}\right ) - \frac{1}{10} \, \sqrt{10} \sqrt{\sqrt{5} + 3} \arctan \left (-\frac{1}{20} \,{\left (2 \, \sqrt{10} \sqrt{5} x^{2} - \sqrt{10} \sqrt{5} \sqrt{2} \sqrt{2 \, x^{4} - \sqrt{5} + 3}\right )} \sqrt{\sqrt{5} + 3}\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x/(x^8+3*x^4+1),x, algorithm="fricas")

[Out]

1/10*sqrt(10)*sqrt(-sqrt(5) + 3)*arctan(-1/10*sqrt(10)*sqrt(5)*x^2*sqrt(-sqrt(5) + 3) + 1/20*sqrt(10)*sqrt(5)*
sqrt(2)*sqrt(2*x^4 + sqrt(5) + 3)*sqrt(-sqrt(5) + 3)) - 1/10*sqrt(10)*sqrt(sqrt(5) + 3)*arctan(-1/20*(2*sqrt(1
0)*sqrt(5)*x^2 - sqrt(10)*sqrt(5)*sqrt(2)*sqrt(2*x^4 - sqrt(5) + 3))*sqrt(sqrt(5) + 3))

________________________________________________________________________________________

Sympy [A]  time = 0.194831, size = 49, normalized size = 0.65 \begin{align*} 2 \left (\frac{\sqrt{5}}{40} + \frac{1}{8}\right ) \operatorname{atan}{\left (\frac{2 x^{2}}{-1 + \sqrt{5}} \right )} - 2 \left (\frac{1}{8} - \frac{\sqrt{5}}{40}\right ) \operatorname{atan}{\left (\frac{2 x^{2}}{1 + \sqrt{5}} \right )} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x/(x**8+3*x**4+1),x)

[Out]

2*(sqrt(5)/40 + 1/8)*atan(2*x**2/(-1 + sqrt(5))) - 2*(1/8 - sqrt(5)/40)*atan(2*x**2/(1 + sqrt(5)))

________________________________________________________________________________________

Giac [A]  time = 1.30564, size = 55, normalized size = 0.73 \begin{align*} \frac{1}{20} \,{\left (\sqrt{5} - 5\right )} \arctan \left (\frac{2 \, x^{2}}{\sqrt{5} + 1}\right ) + \frac{1}{20} \,{\left (\sqrt{5} + 5\right )} \arctan \left (\frac{2 \, x^{2}}{\sqrt{5} - 1}\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x/(x^8+3*x^4+1),x, algorithm="giac")

[Out]

1/20*(sqrt(5) - 5)*arctan(2*x^2/(sqrt(5) + 1)) + 1/20*(sqrt(5) + 5)*arctan(2*x^2/(sqrt(5) - 1))